A new species of Bipolaris from Heliconia rostrata in India

Singh R¹ and Kumar S²

¹Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi – 221005, Uttar Pradesh, India
²Department of Forest Pathology, Kerala Forest Research Institute, Peechi- 680653, Kerala, India

Abstract

Bipolaris rostratae, a new foliicolous anamorphic fungus discovered on living leaves of Heliconia rostrata (Heliconiaceae), is described and illustrated. The species was compared with closely related species of Bipolaris and similar fungi recorded on Heliconia spp. This species is different from other Bipolaris spp. reported on Heliconia due to its shorter, thinner and less septate conidia. A key is provided to all species of Bipolaris reported on Heliconia.

Key words – fungal diversity – morphotaxonomy – Foliicolous fungi – Bipolaris – new species

Introduction

After several taxonomic refinements, graminicolous Helminthosporium were segregated into several genera including Bipolaris, Curvularia, Drechslera and Exserohilum (Sivanesan 1987). These genera belong to Ascomycota, Dothideomycetes, Pleosporales, Pleosporaceae. These genera can be distinguished on the basis of characters such as conidial shape and size, hilum morphology, origin of the germ tubes from the basal or other conidial cells, and the location and sequence in the development of the conidial septa. Illustrations of different hilum morphologies in graminicolous Helminthosporium species were given by Alcorn (1988). The anamorphic genus Drechslera (Pleosporaceae) was described by Ito (1930), which accommodated previously in subgenus Cylindro-Helminthosporium, of graminicolous Helminthosporium. These fungi cause disease on many plant hosts (Zhang & Berbee 2001) where they are commonly observed in their asexual state (Zhang & Berbee 2001). Drechslera can be differentiated from all other graminicolous helminthosporoid genera by its ability to develop a germ tube from any of the cells in the conidia (Sivanesan 1987, Alcorn 1988). In Bipolaris conidia germinate by germ tubes from one or both of the end cells. Hilum morphology can also be used to differentiate Bipolaris and Drechslera. In Drechslera a flat scar without protruding hila exists within the lowest part of the basal cell, whereas in Bipolaris it is inconspicuous or very slightly protuberant and is continuous with the conidial wall (Alcorn 1988). Both genera can also be separated on the basis of their sexual morphs; Drechslera has been linked to Pyrenophora sexual morphs, whereas the sexual morph of Bipolaris was Cochliobolus (Drechsler 1934, Alcorn 1983). On molecular phylogenetic analyses it has been proved that Drechslera and Bipolaris are two distinct genera (Berbee et al. 2000).

Another fungus, Exserohilum Leonard & Suggs (1974), can be differentiated from other graminicolous helminthosporoid genera by a truncate, strongly protruding hilum with redundant bases, often with an enveloping bubble. The conidia germinate by germ tubes originating from either one or
both of the end cells or other intermediate cells. The sexual morphs of *Exserohilum* have been placed in *Setosphaeria* (Leonard & Suggs 1974).

Bipolaris Shoemaker (1959) and *Curvularia* Boedijn (1933) share many morphological similarities (Sivanesan 1987) and both genera have sexual morphs in *Cochliobolus* (Drechsler, 1934). Phylogenetic relationships based of sequences from four gene regions (ITS, GPDH, LSU and EF1-α) from ex-type strains of *Bipolaris*, *Cochliobolus* and *Curvularia* spp. prove that *Bipolaris* and *Curvularia* are two monophyletic groups which indicate separate generic status (Manamgoda et al. 2012) and these findings are in agreement with previous studies (Shimizu et al. 1998, Berbee et al. 1999, Kodueb et al. 2006). Although the asexual morphs cluster in two well defined groups (*Bipolaris* and *Curvularia*) based on molecular data and morphology, their sexual morphs are quite similar indicating that the asexual states have evolved and differentiated more rapidly than the sexual morphs (Manamgoda et al. 2012, 2014). *Bipolaris* is characterized by large canoe-shaped conidia, and lack stromata, branched to unbranched conidiophores with polytretic conidiogenous cells and pseudoseptate conidia with scar very slightly protuberant which is continuous with the conidial wall. *Curvularia* species have straight to curved conidia, and usually stromata below the ascomata.

During a regular visit of the Botanical Garden of Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India, some *Heliconia rostrata* (Hanging Lobster Claw or False Bird of Paradise) plants showed leaf spot symptoms of various sizes which were caused by a *Bipolaris* species. Upon a critical morphological examination and comparison of its morphotaxonomic features with those of the currently accepted species of this genus, it was considered to represent a novel taxon.

Materials and Methods

Specimens of living leaves with disease symptoms suggesting the presence of parasitic fungi, were collected at the Botanical garden of the Deen Dayal Upadhyay (DDU) Gorakhpur University, Gorakhpur in 2012. The collected samples were carried to the laboratory and processed by following standard protocols (Hawksworth, 1974, Savile, 1962). The dried and pressed infected leaf samples were placed inside adsorbant paper envelops along with collection details and than kept in air tight polyethylene bags. Photographs of infection spots on leaf surface were taken by using Sony DSC-5730 camera. Free hand cut sectioning and scrappings were made through infection spots mounted in clear lactophenol cotton-blue mixture for the morphological observation of microscopic structures. Observations were made with an Olympus BX-51 light microscope by using Syntek USB camera. Detailed observations of morphological characters and Line drawings were carried out at different magnification through light microscope (450x and 1000x). The measurements of 30 conidia, hila, and conidiophores and conidiogenous cells, with the extremes given in parentheses were done with the help of combination of stage and ocular micrometer. The holotype is deposited in Ajrekar Mycological Herbarium (AMH), Agharkar Research Institute (ARI), Pune, India; and an isotype was retained in the herbarium of the Department of Botany, D.D.U. Gorakhpur University (GPU), Gorakhpur. The systematic position of the taxa is given in accordance with following literatures [Ellis (1971, 1976), Cannon and Kirk (2007), Kirk et al. (2008), Seifert et al. (2011), Farr and Rossman (2015), MycoBank (www.mycobank.org; accessed 30 April 2015) and the Index Fungorum (www.indexfungorum.org; accessed 30 April 2015)].

Results

Taxonomy

Bipolaris rostratae Raghv. Singh & Sham. Kumar, sp. nov.

MycoBank MB 812424

Diagnoses – Differs from other *Bipolaris* spp. reported on *Heliconia* due to its shorter, thinner and less septate conidia.

Etymology – the epithet *rostratae* is derived from name of host species.
Fig. 1 Heliconia rostrata (AMH 9480, holotype). a. Host plant habit. B. Early stage of infection. c–d. Late stage of infection. Scale bars b–d = 20 mm.

Anamorphic fungus, Hyphomycetes, Foliicolous, Parasitic. Infection spots amphigenous, initially circular to subcircular, but later irregular and spread on the entire leaf surface, yellowish brown to dark brown in colour. Colonies epiphyllous, usually effuse, brown. Mycelium internal. Sexual morph: undetermined. Asexual morph: Stromata absent. Conidiophores macronematous, mononematous, branched to unbranched, cylindrical, erect to procumbent, straight to flexuous, geniculate, smooth, thick-walled, 1–8-septate, mid brown to blackish brown, base bulbous, tip normally swollen, (25–)30–205(–220) × (2.5–)3–6(–8) μm. Conidiogenous cell integrated, terminal to intercalary, monotrelic to polytretic, conidiogenous loci thickened, 1.5–2.5 μm wide. Conidia solitary, simple, acropleurogenous, usually cylindrical to obclavate-cylindrical to fusiform or occasionally orbicular, straight to curved, smooth, thick-walled, mid brown to blackish brown, some conidia constricted at septa, base rounded and apex obtuse, (20–)22–65(–72) × (5–)6–12(–13.5) μm, 2–8-distoseptate, hila thickened, 1.5–2.5 μm wide. Conidia germinating at both ends.

Known distribution – India

Material examined– India, Uttar Pradesh, Gorakhpur, DDU Gorakhpur University, Botanical Garden, on living leaves of Heliconia rostrata Ruiz & Pav. (Heliconiaceae), 11 February 2012, coll., Raghvendra Singh. AMH 9480 (holotype), GPU 604 (isotype).

Teleomorph – Not seen.
Fig. 2 – *Bipolaris rostratae*, microphotographs (AMH 9480, holotype). a–g. Conidia. h–i. Germinated conidia at both end. j–n. Conidiophores. *Scale bars a–n = 20 µm*
Discussion

A survey of literature indicated that a number of *Bipolaris* spp. have been recorded on *Heliconia* spp. viz., *B. cynodontis* Shoemaker (1959), *B. heliconiae* Alcorn (1996), *B. incurvata* Alcorn (1983a), *B. salviniae* Alcorn (1991) and *B. setariae* Shoemaker (1959).

The conidia of *Bipolaris rostratae* [(20–)22–65(–72) × (5–)6–12(–13.5) µm, 2–8-distoseptate] are shorter, thinner and less septate compared to *B. cynodontis* [(27–)40–80(–100) × (10–)12–18(–20) µm, (3–)7(–9)-distoseptate], *B. heliconiae* [65–150 × 15–19 µm, 7–10-distoseptate], *B. incurvata* [100–150 × 19–22 µm, 8–13-distoseptate], *B. salviniae* [(75–)100–170(–190) × (10–)13–17(–19) µm, (6–)10(–14)-distoseptate] and *B. setariae* [(50–)65–100(–108) × (10–)13–16 µm, (5–)8(–10)-distoseptate]. Thus, the fungus *B. rostratae* is designated as new species.
Identification key to Bipolaris species on Heliconia spp.

1 Conidia smooth, shorter, thinner and less septate...2
1* Conidia smooth or slightly verruculose, longer (>72 μm), thicker (>13.5 μm) and more septate (>8)...3
2 Conidia (20–)22–65(–72) × (5–)6–12(–13.5) μm, 2–8-distoseptateBipolaris rostratae
3 Nature of germination in conidia...4
4 End cells sometimes swollen to produce a thin, globose vesicle where germ tubes originate5
4* Germ tubes originating from both or one end cells without forming a vesicle6
5 Conidia hyaline when immature, turning olivaceous green, then brown or golden brown when mature, (27–)40–80(–100) × (10–)12–18(–20) μm, (3–)7(–9)-distoseptateB. cynodontis
6. Conidia pale brown, olivaceous brown, golden brown ...7
7 Conidiophore and conidial size...8
8 Conidia less than 150 μm long, conidiophores less than 350 μm long9
8* Conidia length equal to or more than 150 μm, Conidiophores more than 350 μm long10
9. Conidia (50–)65–100(–108) × (10–)13–16 μm, (5–)8(–10)-distoseptate, Conidiophores (96–)145–
207(–218) × 4–6 μm ...B. setariae
10. Conidia less than 20 μm wide ...11
10* Conidia more than 20 μm wide ...12
11* Conidia (75–)100–170(–190) × (10–)13–17(–19) μm, (6–)10(–14)-distoseptateB. salviniae
12 Conidia 100–150 × 19–22 μm, 8–13-distoseptate ..B. incurvata

Acknowledgements
We are thankful to the Head, CAS in Botany, Banaras Hindu University, Varanasi and Director,
Kerala Forest Research Institute, Peechi, Kerala for necessary facilities. Thankfulness is also
due to both anonymous reviewers for reviewing the manuscript with relevant comments and
suggestions. Raghvendra Singh thanks to the University Grant Commission (UGC), Faculty Research
Promotion Scheme (FRPS/2014), Govt. of India and Shambhu Kumar extends thanks to the SERB,
DST, Govt. of India for financial assistance (SB/YS/LS-288/2013). Authors are indebted to the
Curator of AMH, Agharkar Research Institute (ARI), Pune, for accepting the holotype specimens and
providing an accession number.

References
Alcorn JL. 1988 – The taxonomy of “Helminthosporium” species. Annual Review of Phytopathology
26, 37–56.
Alcorn JL. 1991 – Combinations and synonymy in Bipolaris and Curvularia, and a new species of
Alcorn JL. 1996 – Cochliobolus heliconiae sp. nov. (Ascomycota). Australian Systematic Botany
9(5), 813–817.
Alcorn, JL. 1983a – Generic concepts in Drechslera, Bipolaris and Exserohilum. Mycotaxon 17, 1–86.
Berbee M, Pirseyedi M, Hubbard S. 1999 – Cochliobolus phylogenetics and the origin of known,
highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase
gene sequences. Mycologia 91, 964–977.
Berbee ML, Carmean DA, Winka K. 2000 – Ribosomal DNA and resolution of branching order
among the ascomycota: how many nucleotides are enough? Molecular Phylogenetics and
Evolution 17, 337–344.
Buitenzorg 13(1), 120–134.

